Wireless Protocol Modules MiP Series — AN_PRO001

HI-TECH COMPANY

MIPOT

Wirelesxs Dual Core MCU Modules
32001506xxx/32001552xxx

Application note

Dual Core Programming Guide

MIPOT
32001506BEU

Description

The 32001506xxx is a multi-protocol sub-GHz radio module based on STM32WL55JC
asymmetric dual core arm®Cortex®-M4/Cortex®-MO0+ microcontroller. It keeps arm®Cortex®-
M4 core, flash and RAM memory resources and most of the internal peripherals free for the
user to integrate his own application without an additional host microcontroller.

Current programming guide targets application developers. It gives an overview of the
32001506xxx module’s architecture and provides information about how to create a new
project or import an existing one to start developing a user application for the arm®Cortex®-
M4 core. Furthermore it shows how to interact with preloaded RF radio stack fully controlled
by arm®Cortex®-MO+ core from user application residing on arm®Cortex®-M4 core side.

AN_PROO001 rev0.1.pdf Page 1 of 27
www.mipot.com

m % Wireless Protocol Modules MiP Series — AN_PRO001
MIPOT if
Contents
I o =T = o LT T = 3
2. Architecture OVErVIEW.......ccoiiiieeiuuniiiiiiiiiiiiieiiiiiiieneeresssessse e essssssssssssesessssssssssaes 4
B T 1 ¥ = 5
3.1, ArmMO@COrteX®-IMO+ COME ..eeuiiiiieiiieiieeiie ettt ettt b e s s re e saeeen e sneesaneas 5
3.2, ArMO@COrtEX®-IM4 COMEeiiiiiiieiteet ettt ettt et s e s ne e e e e e sneesaneas 5
3.3. IPCC - Inter-Processor Communication Controllerccocueeriieiniieeniiecniieeneeene 5
4. Creating a new STM32 project for arm®Cortex®-M4ccceeeeeiiiiiiniiinnennniesisnneneennnnes 6
5. Importing an existing STM32 arm®Cortex®-M4 Project......ccccceeeeeeeeeereennncereennneceeennnnes 13
6. Debugging STM32 arm®Cortex®-M4 code........cccceiiiireniiriienniiiniennnieiieenniernennssesssennnes 15
7. Flash memory and RAM considerations......cc.cccciiiieeiiiiniiiiniiiinniiieniniienenenenseneen. 18
8. STM32 arm®Cortex®-MO+ bootcccueeeeiiiiiiiiiiiiiiiiiiiiiiieiiieeeienereeeeereeeeeeeeeeeeeeeeeeeeees 20
9. Inter-core COMMUNICAtION....c..iiiiieniiiiiiiiiiiiiiiin e eaaasenee 21
9.1. ComMmMUNICAtION MEBSSABES ..ciii i 21
0.2, S IVICE MESSAZES i i ii it iieiie ettt e e e e e e e e e e ae s 22
9.3, ASYNCNIONOUS MESSAZES . uuviieiiuiieeeieiiieeeeiiteeeesirteeeessteeesssssaeeeassseeeessssseesessssneesannns 24
10. LOW POWEr MANAZEMENT ...ccuieuieuiieiiiiieieeiiaiioiieiessioiiasiescssstastossassssstassassesssnssassassansss 25
11. ModUIE’'S PINS USAZE ..ccuuiieeiiiiiiiiiiniiieeiciteiireeertneereneserenssssensessnsssssnsssenssssensssssnssssnnne 26
7 R S U=V o o TN o TS o VPO 27
AN_PROO001 rev0.1.pdf Page 2 of 27

www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

MIPOT :

TECH COMPANY

H

1. Prerequisites

Several software development tools may be used to develop applications based on
32001506xxx module.

Current guide will refer to STM32CubelDE version 1.10.1 or newer which is part of the
STM32Cube ecosystem and provides a development platform with peripheral configuration,
code generation, code compilation, and debug features for STM32 microcontrollers.

A knowledgebase of STM32WL55JC internal architecture and basic microcontroller
programming concepts are required to start developing applications with 32001506xxx
module.

For detailed information about STM32WL55JC microcontroller architecture and peripherals
please refer to datasheet “DS13293 Multiprotocol LPWAN dual core 32-bit arm®Cortex®-
M4/MO0+ LoRa®, (G)FSK, (G)MSK, BPSK, up to 256KB flash, 64KB SRAM” and to “RM0453
Reference manual - STM32WL5x advanced arm®-based 32-bit MCUs with sub-GHz radio
solution”.

arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
STM32Cube is an STM trademark.

AN_PROO001 rev0.1.pdf Page 3 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

I-TECH COMPANY

MIPOT :

2. Architecture overview
The following image highlights the STM32WL55JC internal main parts involved in current

guide.
Cortex-MO+ T _| IswczH LDOSMPS
<48 MHz % EI-‘) | L‘Il'adi'D ‘ HSE32
MPU < - :(—]32 Mz
SRAM2
Nl 1) | [l SRR
(=] = b=
MR sacon |a(wo) ()
w _—
= QE ;E: Ee > SRAM1 I
o
™
we [T
Cortex-M4 E Power supgl
{DSP) ﬁ chpnwaaﬁg\wympw]
< 48 MHz
SYSCFG/
MPU 2 CDLF’PEREF]
[DMA1 (7 channets) Ja—{ 3 +«—{ wwoc |
=
DMAZ (7 crannels) - SPI1
i g i]
[DMAMUX]4—» < <—>[SPI2S2]
[GPIOporsascH [— 12C1]
(CRC e g -« 12C2]
[DAC (12 bits)]4—> [] 4—»[12C3]
Tamperature sensor
[LPUART1]4—> ———] 4—»[TIM1]
[LETIM1 " » 2 Msps, 12 channels) * » TIMZ]
[LPTIM2]<—> 4—»[USART1] 4—»[TIM16]
[LPTIM3 Je—s «—>(USART2 | [+ TIM17 |

32001506xxx module’s architecture requires that green bordered parts are exclusively
managed by the arm®Cortex®-MO0+ core and can be considered as a “black box” driven by
arm®Cortex®-M4 core (red part) through IPCC (Inter-Processor Communication Controller,
blue part).

Of course internal flash memory (orange part) is shared among two cores meaning that part
of it is reserved for arm® Cortex®-MO+ radio application and all remaining is for user
application running on arm®Cortex®-M4. Each core uses its flash memory section in an
exclusive mode and is not allowed to operate outside.

AN_PROO001 rev0.1.pdf Page 4 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

MIPOT :

TECH COMPANY

H

3. Features

3.1. arm®Cortex®-MO0+ core

The arm®Cortex®-MO+ is reserved for sub-GHz radio management and implements the radio
stack required by the specific version of the 32001506xxx module. It uses the RTC for stack
timing requirements and 32 kB SRAM2 block as volatile working memory; flash memory is
shared with arm®Cortex®-M4 core in the terms already mentioned.

3.2. arm®Cortex®-M4 core

The arm®Cortex®-M4 is fully available for user application together with all the peripherals
not used by the radio part (all except sub-GHz radio components and RTC). It uses 32 kB
SRAM1 block as volatile working memory and shares flash memory with the arm®Cortex®-
MO+ core.

3.3. IPCC - Inter-Processor Communication Controller

IPCC is used to perform bidirectional communication between cores. It is an ST
Microcontroller proprietary inter-core communication controller. For details please refer to
“RMO0453 Reference manual - STM32WL5x advanced arm®-based 32-bit MCUs with sub-GHz
radio solution”.

IPCC communication operates on a common RAM memory area shared between
arm®Cortex®-M4 and arm®Cortex®-MO0+. In 32001506xxx a 1 kB area is reserved starting from
address 0x20008000 to address 0x200083FF. The IPCC shared memory is totally inside SRAM?2
block, so it does not affect arm®Cortex®-M4 available RAM.

IPCC architecture is based on 12 communication channels, 6 of them in the direction from
arm®Cortex®-M4 to arm®Cortex®-MO0+ and remaining 6 in the opposite direction.

32001506xxx module uses 2 pairs of channels in half-duplex mode. The first pair, named
communication channel, is used for main communication protocol messages, e.g.
configuration, transmit or receive commands. The second pair, named service channel, is used
for internal service messages, e.g. low power management. Each channel operates on its own
defined buffer.

The communication over the communication channel between the arm®Cortex®-M4 and
arm®Cortex®-MO+ cores is performed with the same communication protocol defined for the
physical SPI/I’C/UART channels used into 32001505xxx module and is internally managed
through transmit/receive interrupts and notifications. For details please refer to
“32001505xxx_Command_Reference_revx.x.pdf” document and to the following paragraph
“9.1. Communication messages”.

Protocol messages are written/read to/from IPCC buffers located inside shared RAM area.

A simple arm®Cortex®-M4 application template may be provided as basic reference to
implement IPCC communication with arm®Cortex®-MO0+ core.

AN_PROO001 rev0.1.pdf Page 5 of 27
www.mipot.com

TECH COMPANY

MIPOT :

I

Wireless Protocol Modules MiP Series — AN_PRO001

4. Creating a new STM32 project for arm®Cortex®-M4

If not already done, please download and install STM32CubelDE development platform. It can
be found at following link https.//www.st.com/en/development-tools/stm32cubeide.html

where also user manual and installing guide are available.
After launching STM32CubelDE select a workspace path. It is the working folder pathname

where the project will be created.

[s™32CubelDE Launche

Select a directory as workspace

STM32CubelDE uses the workspace directory to store its preferences and development artifacts.

Workspace: | CADATA\WorkSpaces

Browse...

[Use this as the default and do not ask again
» Recent Workspaces

Cancel

To create a new project press Start new STM32 project button from the Information Center

tab:

[WorkSpaces - STM32CubelDE
File Edit Source Refactor Navigate Search Project Run Window Help
5 P Information Center X

= .?' STM32CubelDE Home

Start a project

)

STM32

e O

STM32
CubelDE

STM32CubelDE

OP-TEE Trusted
< Application
Creation

Welcome to STM32CubelDE

What's new

’ How to access it : Right click on a project > Create an OP-TEE Trusted Application Project

Quick links

LA =8

@ Support & Community

| @ sT™M32CubelDE resource portal on wiki |

| $TM32CubelDE manuals

| B sT™32 videos

Then select the part number for which create the new project and press Next button:

AN_PROO001 rev0.1.pdf

Page 6 of 27
www.mipot.com

https://www.st.com/en/development-tools/stm32cubeide.html

Wireless Protocol Modules MiP Series — AN_PRO001

HI-TECH COMPANY

MIPOT

[STM32 Praject m] X

Target Selection
Select STM32 target or STM32Cube example

MCUMMPU Selector
MCU/MPU Fil

@ Eﬁ' O Features Block Diagram Dacs & Resourcss [Datasheet [Buy
o STHR2N. Sore
o [sTM32WLESIC "

Sub-GHz Wireless Microcontrollers. Dual-core Arm Cortex-M4/M0+ @48 MHz with 256 Kbytes of |

Q + - STM32WL55JCI6 Flash memory, 64 Kbytes of SRAM. LoRa, (G)FSK, (G)MSK, BPSK modulations. AES 256-bit.
Multiprotocol System-on-Chip.

PRODUCTINFO - & Unit Price for 10kU (USS): 55143 E‘
Segment 4 Productis in mass production Boards: NUCLEQ-VYL 56JG1 - NUCLEQ-WL 65JG2 UFBGAT73 515x0.6 P 0.6 mm
Series >
The STM32WL55/54xx long-range wireless and ultra-low-power devices embed a powerful and ultra-low-power LPWAN-compliant radio solution, enabling the
Line > following modulations: LoRa®, (G)FSK. (G)MSK. and BPSK.
Marketing Status > The Lora® modulation is available in STM32WLxSxK only.
These devices are designed to be extremely low-power and are based on the high-performance Arm’ Cortex®-M4 32-bit RISC core operating at a frequency of
Price >

up fo 48 MHz This core implements a full set of DSP instructions. It is complemented by an Am® Cortex® M0+ microcontroller. Both cores implement an
5 independent memory protection unit (MPU) that enhances the application security.
The devices embed high-speed memories (256-Kbyte Flash memory, 64-Kbyte SRAM), and an extensive range of enhanced iOs and peripherals

Pac
Core >

Coprocessor >
MCUs/MPUs List: 2 items Display similar items ¢t Export

MEMORY o | CommercialPartho | _Partho | Reference [Marketing StaXunitPrice£.X] __Board x| _Package X| _Flash x|
@ STM32WLE5.CIE sTuzawLssic STMIZWLES).. Active 55143 UFBGA 73 5x.. 256 kBytes 64 kBytes

Flash =256 (kBytes) v STM32WL55JCIT STM32WLESJ... Active 5.9003 UFBGA 73 5x... 256 kBytes 64 kBytes
®

256
EEPROM = 0 (Bytes)
[,

0

RAM Total =64 (kBytes)
[

64

RAM =64 (kBytes)

[
64
CCMRAM =0 (kBytes)

L4
0

@ <Back

Finish Cancel

Enter a name for the new project, let the “Enable Multi Cpus Configuration” flag selected and
then press Finish button:

[5TM32 Project O X

Setup 5TM32 project

Project
Project Name: | TestChi4|
Use default location

T

Location: C:/DATA/WorkSpaces Erowse...
Options

Targeted Language

®C OC++

Targeted Device Usage

Enable Multi Cpus Configuration

Targeted Binary Type
(®) Executable Static Library

Targeted Project Type
(®) STM32Cube () Empty

< Back Next » Cancel

Press Yes button to the request “Open Associated Perspective?”:

AN_PROO001_rev0.1.pdf Page 7 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

I-TECH COMPANY

MIPOT :

m Open Associated Perspective? X

Device Configuration Tool editor is asseciated with Device Cenfiguration Tool
perspective. Do you want to open this perspective now?

Remember my decision

The project is then created and the STM32CubelDE opens the Device Configuration Tool to
allow device hardware configuration:

] WorSpaces - Device Confguration Toet - STM3ZCubeE 2
Fle €t Novigue Sewch Project Run Window Hep

- D A B HE-0-Q g B U -fireD o @ Q @ =@
L ProjsctBplonr X = B [TesCMdio X =n
] Testoma -

& Common Pinout & Configuration | Clock Configuration Project Manager Tools

£ Drivers

e
[0 TestCM4_CMOPLUS (in €30 v Software Packs
[TstCMA_CMA (10 119 ~ B

3 TestChsioc)
S -2

System Core

va

Analog

UFBGAT3 (Top view)

Here it is possible to set pin functionalities, select the peripherals to enable and configure
them, configure the clocks for all the peripherals, enable middlewares and so on.

Configuring the clocks is quite trivial because the oscillators are the same for both cores, so
no any choices are allowed. The module contains a 32 MHz TCXO as HSE (High Speed External
oscillator) main oscillator and a 32.768 kHz crystal used as LSE (Low Speed External oscillator)
for the RTC. In the System Core category, into RCC section select TCXO for HSE and
Crystal/Ceramic Resonator for LSE.

In Timers category, into RTC section enable the RTC for Cortex®-MO0+ core and set Activate
Clock Source flag to enable LSE for the RTC.

AN_PROO001_rev0.1.pdf Page 8 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

« i Testcns
» &> Common
» &> Drivers
» [TestCM4_CMIPLUS (i €10 s ~ Finodt
» [TestCh4_CMA (i 105
[TestCMMiioc
}'F"“‘f High Speed Clock (HSE) [TCX0
Low Spaed Clock (LSE) [Crystal/Caramic Resanator ~
wCe I Master Clack Output
1 udio Clock Input (25_CKIN)
SY5_M0+
SYs M
—
Analog >
Timers 2
Connectraty
Multimedia >
Security >
L |~ systemParameters
Computing VDD valtage (V) 33v
Instruction Cache Enabled
R Prafetch Bufier Disabled
T d Debug > Data Cache Enabled
race and Dubuig Flash Latency(Ws} 0WS (1 CPU cycle)
- ROG Paramaters
> UFBGAT3 (Top vie
Power and e HSI Calibratian Value & (Top view}
e s R
ato Calbeat - a . a . P - —
HSE Startup Timout Valua ms) 100 L 2\ = a it | 5 Q
®
[WorkSpaces - Device Configuration Tool - STM32CubeiDE - o X

File Edit Navigme Sewch Project Run Window Help

v Pinout

WakeUp [Disable

<
<]
]

Svs_Mo+ [Tampes 1

SYS_Me [Tamper 2
& [0 Tamper 3
—
Caibeation [Disable
Anslog > Il DReferenca clock dstsction
Timers L T —
: MoP
=] a i
o o [Corigura the below parameters
o O Y °
Wsr
o o Hour Format Hourlormat 24
o a Asynchronous Predivider value 127
o a Synchronous Predwider value 255
o o Bin Mode Free tunning BCO calender mode
—_—
‘Connectwity > UFBGAT3 (Top view)
WMutimadia
= 4 1 = Q
Securty

Then, in the Clock Configuration tab select the LSE source clock for the RTC, select the HSE as
main oscillator source clock, enable the PLLCLK and set the following values for PLL
multipliers/dividers: PLLM = /4, *N=X12, /R=/2. This way a SYSCLK equal to 48 MHz will be
obtained. It is necessary to keep the HCLK2 for CPU2 (Cortex®-MO0+) equal to 48 MHz. Other
clocks may also be changed based on user application requirements.

AN_PROO001_rev0.1.pdf Page 9 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

HI-TECH COMPANY

MIPOT

[WorkSpaces - Device Configuration Tool - STM32CubelDE - a x
File Edit Navigate Sewch Project Run Window Help
=i |2~ R -Ri%~-0-%-iF-ididi~-f-ve-a- 2|0 Q ig| @@
[y ProjectBxplorer % = 0 [TenMdine =5
SRR TestCMd.ioc

& Teschas

& Common

& Diivers

] TestChM_CMEPLUS (in C3A0F

» [TestCMA_ChM (in CI14 = o (5L

[TestChatioc

]
H
H
i

F
g2

|
Rclcfallailaie

\Y l
]

. rou | =
[ea] & - - + —0) P -0)

In the System Core category, into IPCC section set the flag Activated to enable the inter-
processor communication controller.

[WorkSpaces - Device Configuration Tool - STM32CubelDE - a x
File Edit Navigste Seach Project Run Window Help

B-HR P-R-RidH-0~-Q-if-i-f- v e 0O Q g @@
[Project Explorer 3¢ 58T | =0 [7estCMice x [{maine g msinc =
v E‘L“é":\‘mm TestCMd.ioc - Pinout & Configuration

& Drivers
) TestCAA_CMBPLUS (in CHA0PLUS
[et M (im 1A

[0 TestChatioc

Pinout & Configuration
~ Pinout

1PCC Mod i

Q - @

-a

Runi
System Care nime con

Cortex-M0+
L] moP
ouA p—
0 O
S oo v | v |
a o
C
L]
v R(= =
SYS_MO =
SYS M4
a
Analog
Timers >
Connecthity >

Multimedia B WVICTintemupt Table T Enabled] Preemgtion Priorty T Sub Pririty]

IPCC RX Occupied lntemupt
Securty > [IIPCC K Frea Inmemupt 0
Compating >
Middevare >
Tiace snd Debug > Praempiion Pricity

IPCC RX Occupied and TX Free Interupt]
Power and Thermal > UFBGAT3 (Top view)
Utities > .

a - o/ lIF | = a v

In the Project Manager tab, into Code Generator section the flag Generate peripheral
initialization as pair of “.c/.h’ files per peripheral may be selected to obtain a separation into
multiple pairs of files of the low level code generated for each enabled peripheral.

AN_PROO001_rev0.1.pdf Page 10 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

HI-TECH COMPANY

MIPOT

3 WorkSpaces - Device Configuration ool - STM3ZCubelDE 8 x

Clock Configuration Project Manager

las a5 raferance in tha toolchan peoject confiquration s

Generated files

B Generata peripheral initiakzation 35 @ pair of "/ files par peripheral

L Sattings
] Set all rae pins a5 analog (to optimize the powar consumption)
) Enable Full Assert

In the Project Manager tab, into Advanced Settings section, it is possible to choose for each
enabled peripheral the library to use for low level code generation. Two choices are available:
HAL driver library and LL driver library which provide a set of low level tools to control
peripherals. LL library differs from HAL library in the fact that it provides a complete control
of every peripheral’s feature allowing the user to directly operate on peripheral’s registers.
HAL library, instead, is a higher level driver and adds an abstraction layer between hardware
and application code which introduces some pre-configured management of the peripherals.

When saving the project the device configuration tool asks to generate the low level code:

Question b4
10¢|

% Do youwant generate Code?

[Remernber my decision

Answering Yes, causes device configuration tool to create a framework project with all
enabled peripherals initialized and ready for the user to start developing his own application.

AN_PROO001 rev0.1.pdf Page 11 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

HI-TECH COMPANY

Console (7] Propertes S O BuidAnsizer X g Statie Stack Ansiyzer +§ =0

Memory Regions | Memery Details
Region Staaddress Endaddvess Sie Free Used Usage (%)

Writable Senaet Insert 1:0

Code generation may be requested at any time using the specific icon e , using the Alt+K
key shortcut or selecting the Generate Code item into Project menu.

Project Run Window Help
Open Project -
Close Project

o Build All Ctrl+B
Build Configurations »
Build Project
Build Working 5et »
Clean...

Build Automatically
Build Targets »

C/C++ Index ¥
Generate Report

i: Generate Code

Properties

The configuration tool generates the code for both arm®Cortex®-M0+ and arm®Cortex®-M4
cores. The project for the arm®Cortex®-MO+ core is needed just to enable the HCLK2 clock for
Cpu2 and the IPCC controller but the user does not have to develop any code for it and must
not re-program any code into arm®Cortex®-MO0+ reserved flash memory.

AN_PROO001 rev0.1.pdf Page 12 of 27
www.mipot.com

MIPOT

Wireless Protocol Modules MiP Series — AN_PRO001

HI-TECH COMPANY

5. Importing an existing STM32 arm®Cortex®-M4 project

To import an existing STM32 arm®Cortex®-M4 project press Import project button from the
Information Center tab:

@ snes2cu5ei0E Home
@

Start a project =
] Welcome to STM32CubelDE &‘:,‘; apccts Cammuny

What's new

4 Standaions STW32 Tools

STM32US ultra-low-power MCU series
STM32Cubx

Quick links

e9eo99 f‘b

Kyy rovicstontous

or select Import item from File menu:

File Edit Source Refactor Mavigate Search Project
Mew Alt+Shift+N >
Open File...

4 Open Projects from File System...

Recent Files >

Close Editor Ctrl+W
Close All Editors Ctrl+ Shift+W

Save Ctrl+5
|zl SaveAs..

Save All Ctrl+Shift+5

Revert

Move...

Rename... F2

Refresh F5

o

Convert Line Delimiters To ¥

Print... Ctrl+P

©

Import...
Export...

C [

Properties Alt+Enter

Switch Workspace >
Restart
Exit

then choose Projects from Folder or Archive option from the Import dialog and press Next

AN_PROO001 rev0.1.pdf Page 13 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

HI-TECH COMPANY

MIPOT

[Import m} *

Select \

Analyzes the content of your folder or archive file to find projects and import E 4 E |
them in the IDE.

Select an import wizard:

| type filter text |

w = General ~

‘@ Archive File
=2 Existing Projects into Workspace
(=7} File System
5 Import ach System Workbench for STM32 Project
m Impaort an Existing 5TM32CubeMX Cenfiguration File (ioc)
E Import Atollic TrueSTUDIO Project
E Import 5TM32Cube Example
[Preferences
[} Projects from Folder or Archive

= C/C++

(= Install

(= PHP

(= PHP Profiler

= Bun/Nehin

C} < Back Finish Cancel

In the following dialog select the folder from which import the existing project and press

Finish:
[T Import Projects from File System or Archive O X
Import Projects from File System or Archive =
pol J] ys =
This wizard analyzes the content of your folder or archive file to find projects and import them in the IDE. . /
Import source: | C\DATA\WorkSpaces\TestCM4 ~ | Directory... Archive...
[type filter text | Select Al
Folder Import as Deselect Al
TestCM4 Eclipse project
TestCMACMOPLUS Eclipse project
] TestCMANCIM4 Ecli ject
= cipsE praEe 3 of 3 selected
[Hide already open projects

[]Close newly imported projects upen completion

Use installed project configurators to:
Search for nested projects

Detect and configure project natures
Working sets

[] Add project to working sets New...

Select...

Show other specialized import wizards

?\ < Back Mext > Cancel

AN_PROO001 rev0.1.pdf Page 14 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

HI-TECH COMPANY

MIPOT

When importing a multiple project the user may choose to import the full project containing
both the sub-projects for arm®Cortex®-M0+ and arm®Cortex®-M4 cores or simply the single
project for the arm®Cortex®-M4 core.

In the project import case there is no need of the arm®Cortex®-MO+ project because here the
assumption is that the arm®Cortex®-M4 project was previously created considering the dual
core operation scenario.

In the above example the previously created TestCM4 project has been imported but, of
course, any existing project can be imported from its specific folder or archive in the same
way.

6. Debugging STM32 arm®Cortex®-M4 code

The arm®Cortex®-MO0+ code is protected and not accessible by debug tools. So the only
debuggable part is the user code developed for the arm®Cortex®-M4 core.

Before starting a debug session it is required to successfully build almost once the project and
create a debug configuration. To do so right click on the project name in Project Explorer tab,
select Debug As and then Debug Configurations.... Otherwise press the Debug icon and select
Debug Configurations....

o [T Tt AL PAAA Fim Cham) 6
B Mew b 7

& Go Into -
~E .
QOpen in New Window 10

~ Show In Alt+Shift+W > 9
12
[E Copy Ctrl+C i;
Paste Crl+V 1
3 Delete Delete -
Source » 1 USER COC
Move 1 Include
o 26 #include "n
Rename... F2 21 #include "i
1 22 #include “g
v puyy Import... 23
Ny Export.. & /* Private
f* USER COC
Build Project %3_‘ g 5 ;
- - - v - -
Clean Project O . % [g v
Refresh F3 f — e =
< (no launch history) :
Close Project
Close Unrelated Projects E
Debug As > |
Build Targets >
Index » Debug Configurations... |
Build Configurations > . .
Organize Favorites...
5 Search... Ctrl+H g
—— - -
Profiling Tools > a1 | e mern o
1 41 /% USER COC
" Runas > a2
45 Debug As > 1 5TM22 C/C++ Application
Friliats ’ Debug Configurations...
Te > —
==m [2 Problems X &2
Compare With >

0items

Restore from Local History... Description

Generate Code

& Convertto C++
3 Run C/C++ Code Analysis
¥ Validate

Configure >

Source bl

Properties Alt+Enter

In the Debug Configuration dialog double click on STM32 C/C++ Application

AN_PROO001 rev0.1.pdf Page 15 of 27
www.mipot.com

HI-TECH COMPANY

MIPOT

Wireless Protocol Modules MiP Series — AN_PRO001

If the project had been successfully built almost once, a new debug configuration will be

E Debug Configurations

Create, manage, and run cenfigurations

B B Y~

[type fitter text |

[T] C/C++ Application

[E] C/C++ Attach to Application

[E] C/C++ Postmortem Debugger

[E] ©/C++ Remaote Application

[£] GDB Hardware Debugging
Java Applet
Java Application

& Launch Group

[PHP Built-in Server

[#] PHP CLI Application

E PHP Web Application
Remote Java Application

[[1] STM32 C/C++ Application

Filter matched 13 of 13 items

~\
@

Configure launch settings from this dialog:

- Press the 'New Configuration' butten to create a configuration of the selected type.

=

- Press the ‘New Prototype’ button to create launch configuration prototype of the selected type.

1 - Press the 'Export’ button to export the selected configurations.

- Press the ‘Duplicate’ button to copy the selected configuration.

3¢ - Press the 'Delete’ button to remove the selected configuration.
7 - Press the ‘Filter’ button to configure filtering options.
- Edit or view an existing configuration by selecting it.
L] - Select launch configuration(s) and then select 'Link Prototype’ menu item to link a prototype.
[u - Select lsunch configuration(s) and then select 'Unlink Prototype’ menu item to unlink a prototype.
[R] - Select launch configuration(s) and then select 'Reset with Prototype Values' menu item to reset with prototype values.

Configure launch perspective settings from the 'Perspectives' preference page.

Debug Close

created with reference to the correct project:

[I Debug Cenfiguratiens

Create, manage, and run configurations

EEEE =N
type filter text |
[£] C/C++ Application
[T] C/C++ Attach to Application
[T] C/C++ Postmortem Debugger
[£] C/C++ Remote Application
[£] GDE Hardware Debugging
Java Applet
Java Application
& Launch Group
[PHP Built-in Server
5] PHP CLI Application
E PHP Web Application
Remote Java Application
[5TM32 C/C++ Application
[TestCM4_CM4 Debug

Filter matched 14 of 15 items

Y
@

Name: | TestCM4_CM4 Debug

[E] Main| %7 Debugger| i Startup | & Source | [] Common

Project:
[Testcma_cma

Browse...

C/C++ Application:

[Debug/TestCha_Ch.cit Search Project... Browse...

Build (if required) before launching
Build Configuration: | Select Automatically

(O Disable auto build
Configure Workspace Settings...

(O Enable auto build
(®) Use workspace settings

Revert Apply

If ST-LINK is used as debug device there is no need of further settings. Otherwise the debug

device has to be set into Debugger tab:

AN_PROO001 rev0.1.pdf

Page 16 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

HI-TECH COMPANY

MIPOT

[I Debug Configurations O x

Create, manage, and run configurations

CE®BXEYT- Narme: | TestCh4_CWM Debug

[type fiter text | Main | %5 Debugger| & Startup| T Source| 5] Commen|
[©] C/C++ Application GDE Connection Settings -
[£] ©/C++ Attach to Application @® Autostart local GDB server Host name or [P address localhost

[€] C/C++ Postmortem Debugger
[£] C/C++ Remote Application (O Connect to remote GDB server Port number 61234

[¢] GDB Hardware Debugging

Javs Applet Debug probe | ST-LINK (ST-LINK GDB server]

Java Application GDE Server Command Line Options
5 Launch Group
& PHP Built-in Server Show Command Line
5] PHP CLI Application [
& PHP Web Application @ SWD o)1\
Remote Java Application
v [[7] STM32 C/C++ Application CIST-UNKS/N SET
[TestCM2 CM4 Debug Frequency (kHa): | Auto ~|
Accessport: | 0- Cortex-h4 -]

Reset behaviour

Type: Connectunderresst ~ | []Halt all cores

Device settings
Debug in low power mades: Enable ~
Suspend watchdog counters while halted: | Ne configuration v

Cross Trigger Interface (CTI) o

Revert Apply
Filter matched 14 of 15 items

@

Pressing the Debug button the debug session will start and all classic debug tools will be
available:

¢ Run | Window Help

2. B Terminate And Relsunch & 4 Bvfletot oo~ @
L hEemEEThg e [TestCMaioc [8) mainc X =B Ve X O ..
Move to Line (C/C++) N
Resume at Line (C/C++) /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init(); Name Type
0P Resume e
Suspend ’ /
Terminate CtieF2 .
& Disconnect
B /* Configure the system clock */
Resume Without Signal et e o
Restart History > e ini on
P alisation ™/
& Restart MX_IPCC_Init();
Restart Configurations. L
’ £ BEGIN SysInit */
. Steplnto s
- /* USER CO D SysInit */
@ Step Over 3
Step Return 7 /* Initialize all configured peripherals */
MX_GPIO_Init();
Run to Line CtieR /+"USER CODE BEGIN 2 */ =
Use Step Filters
/* USER COI /
Step Into Selection Ctrl+Fs.
q/ Run /* Boot CPU2
g HAL_PWREX_ReleaseCore(PWR_CORE_CPU2);
4§ Debug Fi1
Run History > ‘
© Runas > B N
Run Configurations. ’
Debug History >
45 Debug As >
Debug Configurations...
Breakpoint Types >
@brief System Clock Configurati
Toggle Breskpaint Ctrl+Shift+ B . @;;;QL lono ok fantiauraten
Toggle Line Breakpoint *
Toggle Watchpoint ﬁj— \{m)d SystemClock_Config(void) .
Toggle Method Brezkpoint
O CpaltsipTne EiiiLel & Console (8] Problems (3 Executables L4, Debug Output 2 Browser Output 3 Debugger Console [Memory |xp=E8 ra-gr=08
% Remove All Breakpoints TestCMA4_CMA Debug [STM32 C/C++ Application] [pid: 71
Script Watch Expression ~
Script Inspect
L Verifying ...
Seript Display
Inspect
Watch
Download verified successfully
@, Extenal Tools >
v

AN_PROO001_rev0.1.pdf Page 17 of 27
www.mipot.com

MIPOT :

TECH COMPANY

H

Wireless Protocol Modules MiP Series — AN_PRO001

7. Flash memory and RAM considerations

Flash memory and RAM memory are shared resources but they are sharply splitted between
cores to avoid situations where a core overflows to the memory domain assigned to the other

one.

There is only one exception to this rule regarding the IPCC shared memory area. It is a 1 kB

RAM area

arm®Cortex®-M4 to allow data exchange between cores.

residing into arm®Cortex®-MO+ volatile memory zone but shared with

The amount of flash memory available for the arm®Cortex®-M4 application code depends on
the radio protocol stack chosen for the radio part. There are 5 available radio protocol stacks
corresponding to as many software versions of the 32001506xxx module. They are listed in

the following table:

Flash Flash
Module) .
N Radio stack start end Size
yp address address
32001506Axx WMBus Ox08031FFF 200 kB
32001506Bxx LoRaWAN® Ox08029FFF 168 kB
32001506Cxx LoRa® Mipot Ox0802C7FF 178 kB
0x08000000
32001506Dxx LoRa® Modem Ox0802FFFF 192 kB
Multiprotocol
32001506Fxx Ox08021FFF 136 kB
LoRaWAN® + LoRa® Modem

The amount of RAM memory available for the arm®Cortex®-M4 is the same for all module
types as shown in the following table:

Module) RAM RAM .
T Radio stack start end Size
address address
ALL ALL 0x20000000 Ox20007FFF 32 kB

The IPCC shared RAM area is the same for all module types as shown in the following table:

Module - IPCC IPCC .
e Radio stack start end Size
address address
ALL ALL 0x20008000 0x200083FF 1 kB

Flash and RAM memory areas are defined inside the linker file created for the specific build
configuration used. As an example the linker file section defining the memory areas for the
32001506DEU is shown in the following image:

AN_PROO001 rev0.1.pdf

Page 18 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

HI-TECH COMPANY

MIPOT

ETEleMd.\Uc [T "STM32WL55JCIX_FLASH.Id x = 8
1/* ~
2** LinkerScript
3%/

4

5/* Entry Point */
6 ENTRY (Reset_Handler)

8 /* Highest address of the user mode stack */

9_estack = ORIGIN(RAM) + LENGTH(RAM); /* end of "SRAML" Ram type memory */
10

11 _Min_Heap_Size = @x28@; /* required amount of heap */

12 _Min_stack_Size = @x480; /* required amount of stack */

13

14 /* Memories definition */

15 MEMORY

16 {

17 ROM (rx) : ORIGIN = @x08808060, LENGTH = 192K /* Flash memory dedicated to cM4 */

18 RAM (xrw) i ORIGIN = @x2@00@208, LENGTH = 32K /* Non-backup SRAML dedicated to CM4 */
19}

/* Sections */
SECTIONS

[v

B

/* The startup code into "ROM" Rom type memory */

2

25 .isr_vector :

26

27 . = ALIGN(B);

28 KEEP(*(.isr_vecter)) /* Startup code */

29 . = ALIGN(3);

38} >ROM

31

32 /* The program code and other data into "ROM" Rom type memory */
33 Stext :

34

35 . = ALIGN(B);

36 *(.text) /* .text sections (code) */
3 *(Ltext®) /* .text* sectiens (code) */
3 *(.glue_7) /* glue arm to thumb code */
39 =(.glue_7t) /* glue thumb to arm code */

41

42 KEEP (*(.init))

43 KEEP (*(.fini))

44

45 . = ALIGN(3);

46 _etext = .3 /* define a global symbols at end of code */
47} >ROM

48

*(.eh_frame)

49 /* Constant data into "ROM" Rom type memory */

58 .rodata :

51 {

52 . = ALIGN(B); v

STM32WL55JCIX_FLASH.Id

AN_PROO001 rev0.1.pdf Page 19 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

TECH COMPANY

MIPOT :

H

8. STM32 arm®Cortex®-MO0+ boot

The arm®Cortex®-MO0+ can boot only if the arm®Cortex®-M4 enables it by setting the bit 15
C2BOOT (CPU2 boot after reset or wakeup from Stop or Standby mode) of the PWR control
register 4 (PWR_CR4).

This can be done calling the function HAL_PWREXx_ReleaseCore(PWR_CORE_CPU2) if using
HAL drivers, calling the function LL_PWR_EnableBootC2() if using LL drivers or directly writing
to the PWR_CR4 register (SET_BIT(PWR->CR4, PWR_CR4_C2B0OOT)).

In the following image the Cpu2 boot is performed using the HAL function call.

= int main(void)
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration---------mmmmmmmm o */

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();

/* USER CODE BEGIN Init */
/* USER CODE END Inif */

/* Configure the system clock */
SystemClock_Config();

/* IPCC indtialisation */
MX_IPCC_Init();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */
MX_GPIO_Init();

/* USER CODE BEGIN 2 */

/* USER CODE END 2 */

/* Boot CPUZ */
HAL_PWREx ReleaseCore(PWR_CORE_CPUZ);

/* Infinite loop */

/* USER CODE BEGIN WHILE */
while (1)

i

/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */

/* USER CODE END 3 */

h

AN_PROO001 rev0.1.pdf Page 20 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

MIPOT :

TECH COMPANY

I

9. Inter-core communication

Inter-core communication is performed through IPCC (Inter-Processor Communication
Controller) which is based on the 1 kB shared volatile memory area physically located at the
beginning of the arm®Cortex®-M0+ RAM domain.

Communication is logically separated into two kinds of messages: main communication
protocol messages used for radio module control (e.g. working parameters configuration,
transmit and receive commands) and internal service messages used for inter-processor
coordination (e.g. low power management).

Messages are internally routed through different physical channels; so a communication
channel and a service channel are implemented, each of them based on a specific
communication buffer residing at different locations into shared memory.

There is also a further shared memory location used for extra-IPCC information exchange; it is
used e.g. to share the arm®Cortex®-MO+ status (started or not) or to transfer to the
arm®Cortex®-MO0+ data or commands asynchronous with respect to the normal IPCC flow (e.g.
a core reset request).

The above mentioned buffers are listed in the following table:

RAM RAM
Buffer type Usage start end Size
address address
Communication | COMMunication protocol | o 0n00orc | 0x200083FF | 260 Bytes
messages
Service Internal service messages 0x200082EC | 0x200082FB | 16 Bytes
Extra-data Asynchronous messages 0x200082E8 | 0x200082EB 4 Bytes

9.1. Communication messages

The communication over the communication channel between the arm®Cortex®-M4 and
arm®Cortex®-MO0+ cores is performed with the same communication protocol defined for the
physical SPI/I>C/UART channels used into 32001505xxx. For details please refer to
“32001505xxx_Command_Reference_revx.x.pdf” document.

The core that initiates a data exchange over the communication channel must:
e verify that the channel is free;
e write the protocol message into the communication buffer;
e notify to the other core that the channel is busy and a message is waiting to be read;

e wait for the receiving core to notify that the message has been read and the channel
is free again.
The receiving core can react in two ways:
e if no reply is needed for the received message the core clears the communication
buffer and simply notifies that the channel is free;

e if a reply is required the core must clear the communication buffer, write its answer
into the communication buffer and then notify that the channel is free.

AN_PROO001 rev0.1.pdf Page 21 of 27

www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

MIPOT :

TECH COMPANY

H

The sending core, on its side, when receives a channel free notify must always check the
communication buffer for a valid message present. No further notification has to be sent and
the IPCC communication cycle is anyway considered to be completed.

It is mandatory to perform the complete IPCC communication cycle for every sent message
otherwise the inter-core communication stops and waits for the missing step.

9.2. Service messages

The communication over the service channel between the arm®Cortex®-M4 and the
arm®Cortex®-MO0+ cores is based on a very small set of commands using the following minimal
protocol syntax:

<cmd>[<arg>]
where
e <cmd>is the command code;
e <arg> is the optional argument associated to the command.
Both <cmd> and <arg> are 1 byte fields.

Service commands are listed in the following table:

Coznor::nd Argument Description Direction
0x01 none Request low power mode CM4 <> CMO+
0x02 none Request wake-up from low power CM4 <> CMO+
0x05 baud rate Request UART baud rate setting CM4 €& CMO+
OxA5 none End of message processing CM4 - CMO+

Commands 0x01 ‘Request low power mode’ and 0x02 ‘Request wake-up from low power’ can
be sent from both cores depending on the module’s working mode. Please refer to paragraph
“11. Module’s pins usage” to gather more information about how module pins are managed.

If the module uses pins to change and signal its status then commands 0x01 and 0x02 are sent
from arm®Cortex®-M0+ to arm®Cortex®-M4 because in this case low power is managed by
arm®Cortex®-MO0O+ and propagated to arm®Cortex®-M4.

Otherwise low power is managed by arm®Cortex®-M4 and propagated to arm®Cortex®-MO+
through commands 0x01 and 0x02, so they follow the opposite direction.

Command 0x05 ‘Request UART baud rate setting’ is used only in the case of stand-alone
module emulation mode with UART communication. In this working mode the module
behaves as a stand-alone module with the arm®Cortex®-M4 routing messages from the
physical UART to the arm®Cortex®-MO0+ core and vice versa. As the baud rate value is a
parameter contained into the arm®Cortex®-MO0+ configuration memory and the UART is
managed by the arm®Cortex®-M4, the arm®Cortex®-MO0+ uses this command to inform the
arm®Cortex®-M4 about the baud rate to set. Admitted values for baud rate are:

AN_PROO001 rev0.1.pdf Page 22 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

TECH COMPANY

MIPOT :
Baud
Baud
rate
rate
value
0x00 9600
0x01 19200
0x02 38400
0x03 57600
0x04 115200

Command 0xA5 ‘End of message processing’ is a sort of acknowledge that the arm®Cortex®-
M4 sends to arm®Cortex®-MO+ after receiving a communication message from it. Its aim is to
prevent the arm®Cortex®-MO0+ sending further communication messages before the
arm®Cortex®-M4 completes processing the previous one. arm®Cortex®-M4 must send it
otherwise arm®Cortex®-MO0O+ will not send any new messages.

Service messages comply to the same IPCC rules already mentioned for communication
messages, except for the fact that they use the service channel and the related buffer.

The core that initiates a data exchange over the service channel must:
e verify that the channel is free;
e write the message into the service buffer;
e notify to the other core that the channel is busy and a message is waiting to be read;

e wait for the receiving core to notify that the message has been read and the channel
is free again.

On the service channel commands do not require a reply. So the receiving core reacts in the
following way:

e the core clears the communication buffer and simply notifies that the channel is free;

No further notification has to be sent and the IPCC communication cycle is anyway considered
to be completed.

It is mandatory to perform the complete IPCC communication cycle for every sent message
otherwise the inter-core communication stops and waits for the missing step.

AN_PROO001 rev0.1.pdf Page 23 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

TECH COMPANY

MIPOT :

H

9.3. Asynchronous messages

Asynchronous messages are commands or signals without arguments that are exchanged out
of the regular IPCC communication flow. They are listed in the following table:

Co:non‘;:nd Description Direction

OxAA arm®Cortex®-MO0+ not started CM4 > CMO+

OxBB arm®Cortex®-MO0+ started CM4 < CMO+

0xCC Request IPCC interface re-initialization CM4 - CMO+

0xDD Request sub-GHz radio re-initialization CM4 - CMO+

OxEE Request arm®Cortex®-MO+ restart CM4 - CMO+
AN_PROO001_rev0.1.pdf Page 24 of 27

www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

TECH COMPANY

MIPOT :

H

10. Low power management

Details about power management can be found into chapter 6 Power control (PWR) of the
STM32WL55JC reference manual.

Here we just recap the concept that three power domains have to be considered:
arm®Cortex®-M4 power domain, arm®Cortex®-M0+ power domain and System power
domain. When talking about low power management it is necessary to clarify at which power
domain it is referred to. It may happen that at a specific time arm®Cortex®-M4 core is in a
particular low power state while arm®Cortex®-MO+ is in a different one. The System low
power condition corresponds to the lowest (in terms of deepness in sleep condition) low
power state between the ones of each core’s power domain. If arm®Cortex®-M4 is in Sleep
mode while arm®Cortex®-MO0+ is in Stop 2 mode the System is considered to be in Sleep mode.

When arm®Cortex®-MO0+ is set to low power it reaches Stop 2 mode.

Module 32001506xxx provides two ways to manage low power depending on the pin usage
set during configuration.

If pin usage is enabled then the module activates signalling through pins and low power
management is performed through NWAKE pin level checking:

e NWAKE pin high = module to low power;
e NWAKE pin low = wake up module.

NWAKE pin level checking is performed by arm®Cortex®-MO0+ core. So when a change is
detected the arm®Cortex®-MO0+ behaves as follows:
e if NWAKE becomes high, it sends the service command 0x01 to arm®Cortex®-M4 to
signal it that a low power request has arised and then goes to Stop 2 low power mode;
e if NWAKE becomes low, it wakes up from Stop 2 mode and then sends service
command 0x02 to arm®Cortex®-M4 to signal it that a wake up request has arised.
If pin usage is disabled then low power management has to be performed by the user
application controlling the arm®Cortex®-M4 core.
When the user application requests a low power condition it sends the service command 0x01
to arm®Cortex®-MO0+ core which goes to Stop 2 low power mode.

When the user application requests a wake up from low power condition it sends the service
command 0x02 to arm®Cortex®-MO0+ core which wakes up from Stop 2 low power mode.

AN_PROO001 rev0.1.pdf Page 25 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

TECH COMPANY

MIPOT :

H

11. Module’s pins usage

Module’s pins usage is the feature that allows the arm®Cortex®-MO0+ core to manage low
power condition based on the level of NWAKE pin and to signal radio data availability through
NDATA_INDICATE pin.

Pins usage is kept for compatibility with the stand-alone version of the module (32001505xxx
product) but is normally disabled by default.

To enable pins usage the following configuration command has to be sent to the arm®Cortex®-
MO+ core through the IPCC interface mechanism:

OxAA 0x32 0x02 0x91 0x01 0x90

To disable pins usage the command is:
OxAA 0x32 0x02 0x91 0x00 0x91

To read the pins usage status issue the command:
OxAA 0x33 0x01 0x91 0x91

Above commands correspond to configuration memory write/read commands at address
0x91 which is the location of the parameter that defines the pins usage. Admitted values are
0x00 > pins disabled and 0x01 - pins enabled.

AN_PROO001 rev0.1.pdf Page 26 of 27
www.mipot.com

Wireless Protocol Modules MiP Series — AN_PRO001

MIPOT :

TECH COMPANY

H

12. Revision History

Revision Date Description
0.1 08.11.2022 | Preliminary
AN_PROO001 rev0.1.pdf Page 27 of 27

www.mipot.com

