
 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 1 of 27
www.mipot.com

Wirelesxs Dual Core MCU Modules
32001506xxx/32001552xxx
Application note

Dual Core Programming Guide

Description
The 32001506xxx is a multi-protocol sub-GHz radio module based on STM32WL55JC
asymmetric dual core arm®Cortex®-M4/Cortex®-M0+ microcontroller. It keeps arm®Cortex®-
M4 core, flash and RAM memory resources and most of the internal peripherals free for the
user to integrate his own application without an additional host microcontroller.

Current programming guide targets application developers. It gives an overview of the
32001506xxx module’s architecture and provides information about how to create a new
project or import an existing one to start developing a user application for the arm®Cortex®-
M4 core. Furthermore it shows how to interact with preloaded RF radio stack fully controlled
by arm®Cortex®-M0+ core from user application residing on arm®Cortex®-M4 core side.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 2 of 27
www.mipot.com

Contents
1. Prerequisites ...3

2. Architecture overview ...4

3. Features..5

3.1. arm®Cortex®-M0+ core ... 5

3.2. arm®Cortex®-M4 core ... 5

3.3. IPCC – Inter-Processor Communication Controller ... 5

4. Creating a new STM32 project for arm®Cortex®-M4 ..6

5. Importing an existing STM32 arm®Cortex®-M4 project .. 13

6. Debugging STM32 arm®Cortex®-M4 code .. 15

7. Flash memory and RAM considerations ... 18

8. STM32 arm®Cortex®-M0+ boot ... 20

9. Inter-core communication ... 21

9.1. Communication messages ... 21

9.2. Service messages ... 22

9.3. Asynchronous messages .. 24

10. Low power management .. 25

11. Module’s pins usage ... 26

12. Revision History .. 27

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 3 of 27
www.mipot.com

1. Prerequisites
Several software development tools may be used to develop applications based on
32001506xxx module.

Current guide will refer to STM32CubeIDE version 1.10.1 or newer which is part of the
STM32Cube ecosystem and provides a development platform with peripheral configuration,
code generation, code compilation, and debug features for STM32 microcontrollers.

A knowledgebase of STM32WL55JC internal architecture and basic microcontroller
programming concepts are required to start developing applications with 32001506xxx
module.

For detailed information about STM32WL55JC microcontroller architecture and peripherals
please refer to datasheet “DS13293 Multiprotocol LPWAN dual core 32-bit arm®Cortex®-
M4/M0+ LoRa®, (G)FSK, (G)MSK, BPSK, up to 256KB flash, 64KB SRAM” and to “RM0453
Reference manual - STM32WL5x advanced arm®-based 32-bit MCUs with sub-GHz radio
solution”.

arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

STM32Cube is an STM trademark.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 4 of 27
www.mipot.com

2. Architecture overview
The following image highlights the STM32WL55JC internal main parts involved in current
guide.

32001506xxx module’s architecture requires that green bordered parts are exclusively
managed by the arm®Cortex®-M0+ core and can be considered as a “black box” driven by
arm®Cortex®-M4 core (red part) through IPCC (Inter-Processor Communication Controller,
blue part).

Of course internal flash memory (orange part) is shared among two cores meaning that part
of it is reserved for arm® Cortex®-M0+ radio application and all remaining is for user
application running on arm®Cortex®-M4. Each core uses its flash memory section in an
exclusive mode and is not allowed to operate outside.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 5 of 27
www.mipot.com

3. Features

3.1. arm®Cortex®-M0+ core

The arm®Cortex®-M0+ is reserved for sub-GHz radio management and implements the radio
stack required by the specific version of the 32001506xxx module. It uses the RTC for stack
timing requirements and 32 kB SRAM2 block as volatile working memory; flash memory is
shared with arm®Cortex®-M4 core in the terms already mentioned.

3.2. arm®Cortex®-M4 core

The arm®Cortex®-M4 is fully available for user application together with all the peripherals
not used by the radio part (all except sub-GHz radio components and RTC). It uses 32 kB
SRAM1 block as volatile working memory and shares flash memory with the arm®Cortex®-
M0+ core.

3.3. IPCC – Inter-Processor Communication Controller

IPCC is used to perform bidirectional communication between cores. It is an ST
Microcontroller proprietary inter-core communication controller. For details please refer to
“RM0453 Reference manual - STM32WL5x advanced arm®-based 32-bit MCUs with sub-GHz
radio solution”.

IPCC communication operates on a common RAM memory area shared between
arm®Cortex®-M4 and arm®Cortex®-M0+. In 32001506xxx a 1 kB area is reserved starting from
address 0x20008000 to address 0x200083FF. The IPCC shared memory is totally inside SRAM2
block, so it does not affect arm®Cortex®-M4 available RAM.

IPCC architecture is based on 12 communication channels, 6 of them in the direction from
arm®Cortex®-M4 to arm®Cortex®-M0+ and remaining 6 in the opposite direction.

32001506xxx module uses 2 pairs of channels in half-duplex mode. The first pair, named
communication channel, is used for main communication protocol messages, e.g.
configuration, transmit or receive commands. The second pair, named service channel, is used
for internal service messages, e.g. low power management. Each channel operates on its own
defined buffer.

The communication over the communication channel between the arm®Cortex®-M4 and
arm®Cortex®-M0+ cores is performed with the same communication protocol defined for the
physical SPI/I2C/UART channels used into 32001505xxx module and is internally managed
through transmit/receive interrupts and notifications. For details please refer to
“32001505xxx_Command_Reference_revx.x.pdf” document and to the following paragraph
“9.1. Communication messages”.

Protocol messages are written/read to/from IPCC buffers located inside shared RAM area.

A simple arm®Cortex®-M4 application template may be provided as basic reference to
implement IPCC communication with arm®Cortex®-M0+ core.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 6 of 27
www.mipot.com

4. Creating a new STM32 project for arm®Cortex®-M4
If not already done, please download and install STM32CubeIDE development platform. It can
be found at following link https://www.st.com/en/development-tools/stm32cubeide.html
where also user manual and installing guide are available.

After launching STM32CubeIDE select a workspace path. It is the working folder pathname
where the project will be created.

To create a new project press Start new STM32 project button from the Information Center
tab:

Then select the part number for which create the new project and press Next button:

https://www.st.com/en/development-tools/stm32cubeide.html

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 7 of 27
www.mipot.com

Enter a name for the new project, let the “Enable Multi Cpus Configuration” flag selected and
then press Finish button:

Press Yes button to the request “Open Associated Perspective?”:

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 8 of 27
www.mipot.com

The project is then created and the STM32CubeIDE opens the Device Configuration Tool to
allow device hardware configuration:

Here it is possible to set pin functionalities, select the peripherals to enable and configure
them, configure the clocks for all the peripherals, enable middlewares and so on.

Configuring the clocks is quite trivial because the oscillators are the same for both cores, so
no any choices are allowed. The module contains a 32 MHz TCXO as HSE (High Speed External
oscillator) main oscillator and a 32.768 kHz crystal used as LSE (Low Speed External oscillator)
for the RTC. In the System Core category, into RCC section select TCXO for HSE and
Crystal/Ceramic Resonator for LSE.

In Timers category, into RTC section enable the RTC for Cortex®-M0+ core and set Activate
Clock Source flag to enable LSE for the RTC.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 9 of 27
www.mipot.com

Then, in the Clock Configuration tab select the LSE source clock for the RTC, select the HSE as
main oscillator source clock, enable the PLLCLK and set the following values for PLL
multipliers/dividers: PLLM = /4, *N=X12, /R=/2. This way a SYSCLK equal to 48 MHz will be
obtained. It is necessary to keep the HCLK2 for CPU2 (Cortex®-M0+) equal to 48 MHz. Other
clocks may also be changed based on user application requirements.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 10 of 27
www.mipot.com

In the System Core category, into IPCC section set the flag Activated to enable the inter-
processor communication controller.

In the Project Manager tab, into Code Generator section the flag Generate peripheral
initialization as pair of ‘.c/.h’ files per peripheral may be selected to obtain a separation into
multiple pairs of files of the low level code generated for each enabled peripheral.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 11 of 27
www.mipot.com

In the Project Manager tab, into Advanced Settings section, it is possible to choose for each
enabled peripheral the library to use for low level code generation. Two choices are available:
HAL driver library and LL driver library which provide a set of low level tools to control
peripherals. LL library differs from HAL library in the fact that it provides a complete control
of every peripheral’s feature allowing the user to directly operate on peripheral’s registers.
HAL library, instead, is a higher level driver and adds an abstraction layer between hardware
and application code which introduces some pre-configured management of the peripherals.

When saving the project the device configuration tool asks to generate the low level code:

Answering Yes, causes device configuration tool to create a framework project with all
enabled peripherals initialized and ready for the user to start developing his own application.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 12 of 27
www.mipot.com

Code generation may be requested at any time using the specific icon , using the Alt+K
key shortcut or selecting the Generate Code item into Project menu.

The configuration tool generates the code for both arm®Cortex®-M0+ and arm®Cortex®-M4
cores. The project for the arm®Cortex®-M0+ core is needed just to enable the HCLK2 clock for
Cpu2 and the IPCC controller but the user does not have to develop any code for it and must
not re-program any code into arm®Cortex®-M0+ reserved flash memory.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 13 of 27
www.mipot.com

5. Importing an existing STM32 arm®Cortex®-M4 project
To import an existing STM32 arm®Cortex®-M4 project press Import project button from the
Information Center tab:

or select Import item from File menu:

then choose Projects from Folder or Archive option from the Import dialog and press Next

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 14 of 27
www.mipot.com

In the following dialog select the folder from which import the existing project and press
Finish:

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 15 of 27
www.mipot.com

When importing a multiple project the user may choose to import the full project containing
both the sub-projects for arm®Cortex®-M0+ and arm®Cortex®-M4 cores or simply the single
project for the arm®Cortex®-M4 core.

In the project import case there is no need of the arm®Cortex®-M0+ project because here the
assumption is that the arm®Cortex®-M4 project was previously created considering the dual
core operation scenario.

In the above example the previously created TestCM4 project has been imported but, of
course, any existing project can be imported from its specific folder or archive in the same
way.

6. Debugging STM32 arm®Cortex®-M4 code
The arm®Cortex®-M0+ code is protected and not accessible by debug tools. So the only
debuggable part is the user code developed for the arm®Cortex®-M4 core.

Before starting a debug session it is required to successfully build almost once the project and
create a debug configuration. To do so right click on the project name in Project Explorer tab,
select Debug As and then Debug Configurations…. Otherwise press the Debug icon and select
Debug Configurations….

In the Debug Configuration dialog double click on STM32 C/C++ Application

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 16 of 27
www.mipot.com

If the project had been successfully built almost once, a new debug configuration will be
created with reference to the correct project:

If ST-LINK is used as debug device there is no need of further settings. Otherwise the debug
device has to be set into Debugger tab:

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 17 of 27
www.mipot.com

Pressing the Debug button the debug session will start and all classic debug tools will be
available:

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 18 of 27
www.mipot.com

7. Flash memory and RAM considerations
Flash memory and RAM memory are shared resources but they are sharply splitted between
cores to avoid situations where a core overflows to the memory domain assigned to the other
one.

There is only one exception to this rule regarding the IPCC shared memory area. It is a 1 kB
RAM area residing into arm®Cortex®-M0+ volatile memory zone but shared with
arm®Cortex®-M4 to allow data exchange between cores.

The amount of flash memory available for the arm®Cortex®-M4 application code depends on
the radio protocol stack chosen for the radio part. There are 5 available radio protocol stacks
corresponding to as many software versions of the 32001506xxx module. They are listed in
the following table:

Module
type

Radio stack
Flash
start

address

Flash
end

address
Size

32001506Axx WMBus

0x08000000

0x08031FFF 200 kB

32001506Bxx LoRaWAN® 0x08029FFF 168 kB

32001506Cxx LoRa® Mipot 0x0802C7FF 178 kB

32001506Dxx LoRa® Modem 0x0802FFFF 192 kB

32001506Fxx
Multiprotocol

LoRaWAN® + LoRa® Modem
0x08021FFF 136 kB

The amount of RAM memory available for the arm®Cortex®-M4 is the same for all module
types as shown in the following table:

Module
type

Radio stack
RAM
start

address

RAM
end

address
Size

ALL ALL 0x20000000 0x20007FFF 32 kB

The IPCC shared RAM area is the same for all module types as shown in the following table:

Flash and RAM memory areas are defined inside the linker file created for the specific build
configuration used. As an example the linker file section defining the memory areas for the
32001506DEU is shown in the following image:

Module
type

Radio stack
IPCC
start

address

IPCC
end

address
Size

ALL ALL 0x20008000 0x200083FF 1 kB

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 19 of 27
www.mipot.com

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 20 of 27
www.mipot.com

8. STM32 arm®Cortex®-M0+ boot
The arm®Cortex®-M0+ can boot only if the arm®Cortex®-M4 enables it by setting the bit 15
C2BOOT (CPU2 boot after reset or wakeup from Stop or Standby mode) of the PWR control
register 4 (PWR_CR4).

This can be done calling the function HAL_PWREx_ReleaseCore(PWR_CORE_CPU2) if using
HAL drivers, calling the function LL_PWR_EnableBootC2() if using LL drivers or directly writing
to the PWR_CR4 register (SET_BIT(PWR->CR4, PWR_CR4_C2BOOT)).

In the following image the Cpu2 boot is performed using the HAL function call.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 21 of 27
www.mipot.com

9. Inter-core communication
Inter-core communication is performed through IPCC (Inter-Processor Communication
Controller) which is based on the 1 kB shared volatile memory area physically located at the
beginning of the arm®Cortex®-M0+ RAM domain.

Communication is logically separated into two kinds of messages: main communication
protocol messages used for radio module control (e.g. working parameters configuration,
transmit and receive commands) and internal service messages used for inter-processor
coordination (e.g. low power management).

Messages are internally routed through different physical channels; so a communication
channel and a service channel are implemented, each of them based on a specific
communication buffer residing at different locations into shared memory.

There is also a further shared memory location used for extra-IPCC information exchange; it is
used e.g. to share the arm®Cortex®-M0+ status (started or not) or to transfer to the
arm®Cortex®-M0+ data or commands asynchronous with respect to the normal IPCC flow (e.g.
a core reset request).

The above mentioned buffers are listed in the following table:

9.1. Communication messages

The communication over the communication channel between the arm®Cortex®-M4 and
arm®Cortex®-M0+ cores is performed with the same communication protocol defined for the
physical SPI/I2C/UART channels used into 32001505xxx. For details please refer to
“32001505xxx_Command_Reference_revx.x.pdf” document.

The core that initiates a data exchange over the communication channel must:

 verify that the channel is free;

 write the protocol message into the communication buffer;

 notify to the other core that the channel is busy and a message is waiting to be read;

 wait for the receiving core to notify that the message has been read and the channel
is free again.

The receiving core can react in two ways:

 if no reply is needed for the received message the core clears the communication
buffer and simply notifies that the channel is free;

 if a reply is required the core must clear the communication buffer, write its answer
into the communication buffer and then notify that the channel is free.

Buffer type Usage
RAM
start

address

RAM
end

address
Size

Communication
Communication protocol

messages
0x200082FC 0x200083FF 260 Bytes

Service Internal service messages 0x200082EC 0x200082FB 16 Bytes

Extra-data Asynchronous messages 0x200082E8 0x200082EB 4 Bytes

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 22 of 27
www.mipot.com

The sending core, on its side, when receives a channel free notify must always check the
communication buffer for a valid message present. No further notification has to be sent and
the IPCC communication cycle is anyway considered to be completed.

It is mandatory to perform the complete IPCC communication cycle for every sent message
otherwise the inter-core communication stops and waits for the missing step.

9.2. Service messages

The communication over the service channel between the arm®Cortex®-M4 and the
arm®Cortex®-M0+ cores is based on a very small set of commands using the following minimal
protocol syntax:

<cmd>[<arg>]

where

 <cmd> is the command code;

 <arg> is the optional argument associated to the command.

Both <cmd> and <arg> are 1 byte fields.

Service commands are listed in the following table:

Commands 0x01 ‘Request low power mode’ and 0x02 ‘Request wake-up from low power’ can
be sent from both cores depending on the module’s working mode. Please refer to paragraph
“11. Module’s pins usage” to gather more information about how module pins are managed.

If the module uses pins to change and signal its status then commands 0x01 and 0x02 are sent
from arm®Cortex®-M0+ to arm®Cortex®-M4 because in this case low power is managed by
arm®Cortex®-M0+ and propagated to arm®Cortex®-M4.

Otherwise low power is managed by arm®Cortex®-M4 and propagated to arm®Cortex®-M0+
through commands 0x01 and 0x02, so they follow the opposite direction.

Command 0x05 ‘Request UART baud rate setting’ is used only in the case of stand-alone
module emulation mode with UART communication. In this working mode the module
behaves as a stand-alone module with the arm®Cortex®-M4 routing messages from the
physical UART to the arm®Cortex®-M0+ core and vice versa. As the baud rate value is a
parameter contained into the arm®Cortex®-M0+ configuration memory and the UART is
managed by the arm®Cortex®-M4, the arm®Cortex®-M0+ uses this command to inform the
arm®Cortex®-M4 about the baud rate to set. Admitted values for baud rate are:

Command
code

Argument Description Direction

0x01 none Request low power mode CM4 CM0+

0x02 none Request wake-up from low power CM4 CM0+

0x05 baud rate Request UART baud rate setting CM4 CM0+

0xA5 none End of message processing CM4 CM0+

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 23 of 27
www.mipot.com

Baud
rate

value

Baud
rate

0x00 9600

0x01 19200

0x02 38400

0x03 57600

0x04 115200

Command 0xA5 ‘End of message processing’ is a sort of acknowledge that the arm®Cortex®-
M4 sends to arm®Cortex®-M0+ after receiving a communication message from it. Its aim is to
prevent the arm®Cortex®-M0+ sending further communication messages before the
arm®Cortex®-M4 completes processing the previous one. arm®Cortex®-M4 must send it
otherwise arm®Cortex®-M0+ will not send any new messages.

Service messages comply to the same IPCC rules already mentioned for communication
messages, except for the fact that they use the service channel and the related buffer.

The core that initiates a data exchange over the service channel must:

 verify that the channel is free;

 write the message into the service buffer;

 notify to the other core that the channel is busy and a message is waiting to be read;

 wait for the receiving core to notify that the message has been read and the channel
is free again.

On the service channel commands do not require a reply. So the receiving core reacts in the
following way:

 the core clears the communication buffer and simply notifies that the channel is free;

No further notification has to be sent and the IPCC communication cycle is anyway considered
to be completed.

It is mandatory to perform the complete IPCC communication cycle for every sent message
otherwise the inter-core communication stops and waits for the missing step.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 24 of 27
www.mipot.com

9.3. Asynchronous messages

Asynchronous messages are commands or signals without arguments that are exchanged out
of the regular IPCC communication flow. They are listed in the following table:

Command
code

Description Direction

0xAA arm®Cortex®-M0+ not started CM4 CM0+

0xBB arm®Cortex®-M0+ started CM4 CM0+

0xCC Request IPCC interface re-initialization CM4 CM0+

0xDD Request sub-GHz radio re-initialization CM4 CM0+

0xEE Request arm®Cortex®-M0+ restart CM4 CM0+

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 25 of 27
www.mipot.com

10. Low power management
Details about power management can be found into chapter 6 Power control (PWR) of the
STM32WL55JC reference manual.

Here we just recap the concept that three power domains have to be considered:
arm®Cortex®-M4 power domain, arm®Cortex®-M0+ power domain and System power
domain. When talking about low power management it is necessary to clarify at which power
domain it is referred to. It may happen that at a specific time arm®Cortex®-M4 core is in a
particular low power state while arm®Cortex®-M0+ is in a different one. The System low
power condition corresponds to the lowest (in terms of deepness in sleep condition) low
power state between the ones of each core’s power domain. If arm®Cortex®-M4 is in Sleep
mode while arm®Cortex®-M0+ is in Stop 2 mode the System is considered to be in Sleep mode.

When arm®Cortex®-M0+ is set to low power it reaches Stop 2 mode.

Module 32001506xxx provides two ways to manage low power depending on the pin usage
set during configuration.

If pin usage is enabled then the module activates signalling through pins and low power
management is performed through NWAKE pin level checking:

 NWAKE pin high module to low power;

 NWAKE pin low wake up module.

NWAKE pin level checking is performed by arm®Cortex®-M0+ core. So when a change is
detected the arm®Cortex®-M0+ behaves as follows:

 if NWAKE becomes high, it sends the service command 0x01 to arm®Cortex®-M4 to
signal it that a low power request has arised and then goes to Stop 2 low power mode;

 if NWAKE becomes low, it wakes up from Stop 2 mode and then sends service
command 0x02 to arm®Cortex®-M4 to signal it that a wake up request has arised.

If pin usage is disabled then low power management has to be performed by the user
application controlling the arm®Cortex®-M4 core.

When the user application requests a low power condition it sends the service command 0x01
to arm®Cortex®-M0+ core which goes to Stop 2 low power mode.

When the user application requests a wake up from low power condition it sends the service
command 0x02 to arm®Cortex®-M0+ core which wakes up from Stop 2 low power mode.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 26 of 27
www.mipot.com

11. Module’s pins usage
Module’s pins usage is the feature that allows the arm®Cortex®-M0+ core to manage low
power condition based on the level of NWAKE pin and to signal radio data availability through
NDATA_INDICATE pin.

Pins usage is kept for compatibility with the stand-alone version of the module (32001505xxx
product) but is normally disabled by default.

To enable pins usage the following configuration command has to be sent to the arm®Cortex®-
M0+ core through the IPCC interface mechanism:

0xAA 0x32 0x02 0x91 0x01 0x90

To disable pins usage the command is:

0xAA 0x32 0x02 0x91 0x00 0x91

To read the pins usage status issue the command:

0xAA 0x33 0x01 0x91 0x91

Above commands correspond to configuration memory write/read commands at address
0x91 which is the location of the parameter that defines the pins usage. Admitted values are
0x00 pins disabled and 0x01 pins enabled.

 Wireless Protocol Modules MiP Series – AN_PRO001

AN_PRO001_rev0.1.pdf Page 27 of 27
www.mipot.com

12. Revision History

Revision Date Description

0.1 08.11.2022 Preliminary

