

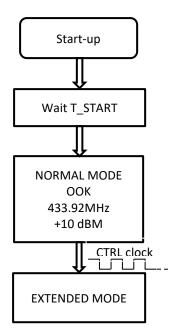
2019-24-07

32001371 - SMD 433.92MHz OOK/FSK TRANSMITTER

32001371 TX module is an SMD 433.92MHz OOK-FSK transmitter. It can operate in:

- **NORMAL Transmission Mode** whose <u>operation</u> is already described in the datasheet
- **EXTENDED Mode**, user programmable, <u>covered in this document</u>

1. EXTENDED MODE


Extended mode can be entered using a **2 wire interface** provided by means of the same I/O lines that are used for normal operation. Such lines are available on pins 2 and 3 and must be connected to an external microcontroller. Pin 2 is used as CTRL pin for configuration and is normally connected to Vcc for standard transmission mode while pin 3 is TX DATA pin.

2019-24-07

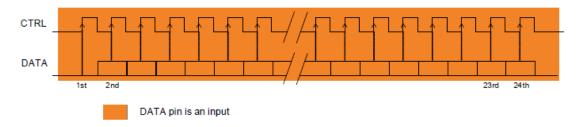
1.1. Start-up

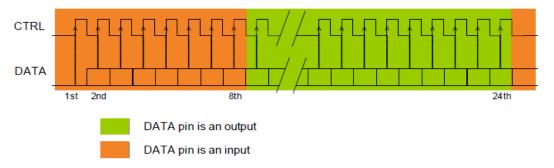
Following flow chart shows start-up sequence.

At power up the 32001371 TX module waits T_START time to elapse and then automatically starts in NORMAL MODE with OOK modulation at 433.92MHz. It can work indefinitely in NORMAL MODE or it can switch to EXTENDED MODE.

1.2. EXTENDED Programming mode

EXTENDED Programming mode can be entered after start-up from NORMAL MODE.


As long as CTRL (pin 2) is kept stable, the TX DATA (pin 3) pin is considered by the circuit as the input for the data to be transmitted over the air. Programming mode is entered providing a square wave (up to 10MHz) on CTRL pin and holding TX DATA pin low during a CTRL's rising edge.


2019-24-07

Once programming mode is entered TX module's internal registers are available both for writing and reading operations. All commands are 24 bits long as shown in following images.

Write operation:

Read operation:

As stated in previous discussion, programming of the configuration register is triggered by a rising edge on the CTRL line while TX DATA line is held low. Upon detection of such condition, the data applied to the TX DATA pin is accepted as register configuration information, the data bits are clocked on subsequent rising edges of the clocking signal applied to the CTRL pin. Note that, once triggered, all 24 clock cycle must be issued to the 32001371 TX module.

2019-24-07

The first rising edge on CTRL which initiates the programming mode must occur <u>at least 1 ms after</u> the circuit has been powered up or reset.

Following table lists available configuration commands:

Byte 0					Byte 1								Byte 2							П	Instruction							
7	6	5	4	3	2	1	ı	0	7	6	5	4	3	2	1	0	7	6	5	4	3	1	2	1	0	msd detroit		
0	0 0 0 0 (0000) DA(15:0)			ľ		Write Application bits																						
0	0 0 0 1 1 DF(18:0)							Write Frequency bits																				
0	0	1	1	Г	(0011) DA(15:0)						Read Application bits																	
0	1	0	0	Г	(0	10	00) DF(15			15:	5:0)								Read 16 least significant Frequency bits									
0	1	0	1		(0	10	1)		DS(12:5) DS(4:0)		-	DF 16)		C	Read Radio chip version, Status and 3 most significant Frequency bits													
0	0 1 1 0 (0110) DS(28:13)					Read Bits signature																						
1	1 x						Discard, not a valid instruction																					
												ΑI	11													Recovery instruction		

The first "0" transmitted to the 32001371 TX module is required to initialize communication. The following 3 bits (highlighted in blue) determine the type of instruction. The forthcoming bits (highlighted in green) define a protection pattern; any error in these bits voids the instruction.

2019-24-07

1.2.1. <u>APPLICATION Configuration Parameters</u>

Name	Number	Description	NORMAL MODE
Mode	DA[15]	Mode: 0 -> Automatic mode 1 -> Forced transmit mode	0
Modul	DA[14]	Modulation scheme: 0 -> FSK 1 -> OOK	1
Band	DA[13]	Must be 0	0
Fdev	DA[12:5]	RF Frequency deviation in FSK mode only. Expressed in multiples of $F_{\text{step}} = 1.58691 \text{kHz}$	Unused
Pout	DA[4]	Output power range: 0 -> 0 dBm 1 -> 10 dBm	1
TOFFT	DA[3]	Period of inactivity on TX DATA before 32001371 TX module enters Sleep mode in Extended mode: 0 -> 2 ms 1 -> 20 ms	1
RES	DA[2:0]	Reserved	100

Note: All changes to the APPLICATION parameters must be performed when the device is in Sleep mode, with the exception of DA[15]. Mode can be sequentially written to "1", and then "0" while the device is in Transmit mode, to speed up the turn off process and circumvent the TOFFT delay.

2019-24-07

1.2.2. FREQUENCY Configuration Parameters

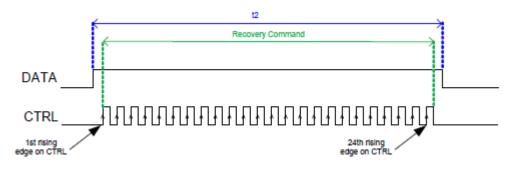
Name	Number	Description	NORMAL MODE
F _{rf}	DF[18:0]	RF operating frequency	0x42C1C
			Frf=433.92MHz

If done in Sleep mode, the Frequency change instruction will be applied next time the 32001371 TX module is turned on. If Frequency change occurs during transmission, the automated Frequency Hopping sequence will take place.

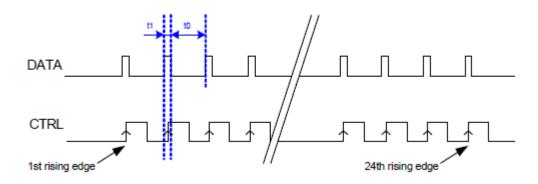
1.2.3. Status Parameters

Name	Number	Description	Normal and
			Extended modes
RES	DS[28:13]	Reserved	1
Radio chip	DS[12:5]	Radio chip identification number	"0001 0001"> V1A
Version			
RES	DS[4:2]	Reserved	1
TX_READY	DS[1]	TX_READY:	
		0 -> Transmitter not Ready	
		1 -> Transmitter is Ready	
RES	DS[0]	Reserved	-

Chip Version DS[12:5] are read-only bits.


1.2.4. Recovery Command

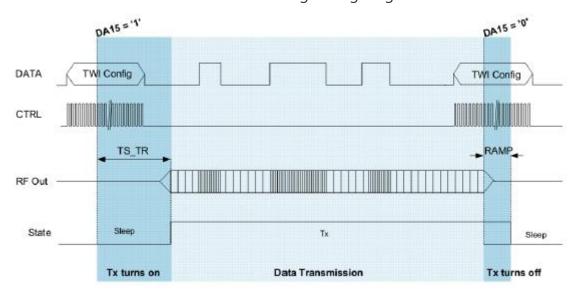
In the event of spurious activity (less than 24 clock cycles received) on the CTRL pin, control over the 2 wire interface can be recovered in two possible ways:



2019-24-07

Quick Recovery command:

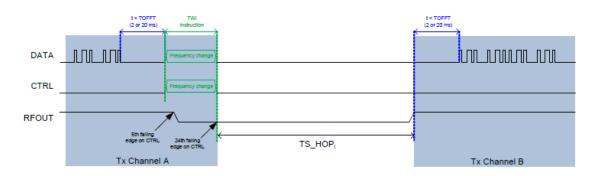
Pulsed Recovery command:


- If $t_2 < 5$ us, the 32001371 TX module will not turn into TX mode during the recovery command (if not previously in TX mode)
- If t_1 < 5 us, with t_0 > 5 us, the 32001371 TX module will not turn into TX mode in the second scenario of recovery command
- During the Pulsed recovery command, t_0 timing does not have any upper limit
- If t_1 or t_2 exceeds 5us, the recovery command will still be successful, but the transmitter will momentarily turn on.

2019-24-07

1.3. Forced Transmit Mode

In Forced Transmit Mode the circuit can be forced to wake up and go to TX mode by sending an APPLICATION instruction through the 2 wire interface, and setting the Mode bit DA[15] to '1'. Once in Transmit the circuit will transmit over the air the data stream presented on the TX DATA pin. The circuit will stay in transmit mode until a new APPLICATION instruction is sent with DA[15] to '0'. Such behavior is shown in the following timing diagram:



1.4. Frequency Hopping Spread Spectrum

Frequency hopping is supported in EXTENDED mode. After sending the data stream in the first channel, the user can send a Frequency change instruction containing the new channel frequency. The circuit will automatically ramp down the PA, lock the PLL to the new frequency, and turn the Power Amplifier back on. The user can then send his packet data on the new channel. Timings are detailed hereafter:

2019-24-07

- During any 2 wire interface access, the input of the modulator is inhibited
- The time between two Frequency change instructions shall be greater than $\label{eq:total_control} \mathsf{TS_HOP}_i$

2. Frequency Band Coverage

The 32001371 TX module offers several combinations or frequency references and frequency outputs, allowing for maximum flexibility and design of multiband products as shown in the following table:

Reference Frequency FXOSC	Band Setting DA[13]	Upper/Lower Frequency Bounds	F _{step}	F _{rf} & F _{dev}
26MHz	0	338 to 450MHz	$Fstep = \frac{26x10^6}{2^{14}} $ = 1.58691kHz	Frf = DF[18:0]xFstep Fdev = DA[12:5]xFstep

2019-24-07

3. **Electrical Specifications**

Symbol	Description	Conditions	Min	Тур	Max	Unit
FBAND	Accessible Frequency Bands	Band 0	338	-	450	MHz
FDA	Frequency deviation, FSK		10	-	200	kHz
BRF	Bit rate, FSK	Permissible Range	0.5	-	100	kbps
BRO	Bit rate, OOK	Permissible range	0.5	-	10	kbps
TS_TR	Time from Sleep to TX mode		1	650	2000	us
TS_HOP0	Channel hop time in Band0	315 to 390MHz	ı	250	500	us
TOFFT	Timer from TX DATA activity	Programmable	-	2	-	ms
	to Sleep			20	-	ms
T_START	Time before CTRL pin mode	Time from power on to	-	200	-	ms
	selection	sampling of CTRL		+TS_OSC		

TS_OSC is the oscillator startup time and depends on the electrical characteristics of the crystal.

4. <u>Digital Specifications</u>

Symbol	Description	Conditions	Min	Тур	Max	Unit
f_{CTRL}	CTRL Clock Frequency		ı	-	10	MHz
t_ch	CTRL Clock High time		45	-	1	ns
t _{cl}	CTRL Clock Low time		45	-	ı	ns
t _{rise}	CTRL Clock Rise time		1	-	5	ns
t _{fall}	CTRL Clock Fall time		ı	-	5	ns
t _{setup}	'	From DATA transition to CTRL rising edge	45	-	-	ns
t _{hold}		From CTRL rising edge to DATA transition	45	-	-	ns
t ₀ , t ₂	Time at logic '1' on DATA during Recovery command		-	-	5	us
t ₁	Time at logic '0' on DATA during Recovery command		5	-	-	us